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Abstract. In this paper we study the connection between the equilibrium relaxation properties
of glass-forming systems and the spatial organization of cooperative processes which govern their
dynamics. This study has been performed by Monte Carlo simulations off -spin frustrated kinetic
lsing models for different local kinetic constraintsf . Both the equilibrium dynamics of these
systems and the topological properties of their cooperative processes were investigated through the
calculation of autocorrelation functions and the distribution of cooperativity lengths. The results
show that the different local kinetic constraints induce very different spatial organizations of the
cooperative processes and thus heterogeneous dynamics of different natures. On the other hand,
whatever their spatial organization, the average spatial extent of the cooperative processes acts as
a dynamical length scale which governs the dynamics of the system.

1. Introduction

A most striking feature of the dynamics of glasses is the effective increase of the activation
energy detected in undercooled liquids as the glass transition is approached [1]. This behaviour
gives rise to the characteristic non-Arrhenian dynamics of glasses and is generally attributed
to the increasing cooperativity of the molecular motions upon cooling. This interpretation is,
for instance, the framework of the Adam and Gibbs theory [2] which assumes the existence
of ‘cooperatively rearranging regions’ whose size is expected to be inversely proportional to
the configurational entropy of the system. However, up to now this assumption could not
be confirmed by any direct experimental observation of cooperative processes. The recent
finding of heterogeneous dynamics [3–5] in some undercooled liquids and glasses is the
only experimental fact which infers the existence of cooperative molecular motions. Two
fundamental questions arise from this which we are interested in here:

• Does the increasing spatial extent of the cooperative processes on approaching the
glass transition provide a ‘dynamical length scale’ which governs the dynamics of the
system [6]?
• Is there a connection between the temperature evolution of this characteristic length for

the dynamics and the static structural correlation length which is suspected to develop in
the undercooled liquids?

These attractive open questions [7, 8] are, however, very difficult to address in glass-
forming liquids for which such dynamical and structural characteristic lengths are extremely
difficult to determine experimentally:

0305-4470/99/488429+08$30.00 © 1999 IOP Publishing Ltd 8429



8430 J F Willart et al

• A dynamical characteristic length can only be measured indirectly by the analysis of size
effects which occur, for instance, when the liquid is confined in small pores [9, 10]. In
that case, the linear dimension of the pores must be chosen to compete with that of the
spatial extent of the cooperative process.
• A structural characteristic length can hardly be derived from a spatially average structure

factorS(| EQ|) which only gives poor structural information about a possible short-range
order developing in the undercooled liquid [2, 7]. Accordingly, no sign of structural
ordering could be detected in many glass-forming liquids in their route to the glassy state,
even in those which develop a strongly non-Arrhenian dynamics (i.e. in so-called fragile
liquids [1]).

All these difficulties partially disappear in computer experiments which allow detailed
investigation of both the structure and the dynamics. This advantage is even more effective
when studying suitable spin models whose simplicity allows us to selectively study some
specific fundamental mechanisms possibly involved in the complex vitrification process. One
of these models is the ‘f -spin frustrated kinetic Ising model’ (f -SFKI model) which has been
developed by Fredrickson [11] to test whether the concept of cooperativity can be invoked
to explain the dramatic changes of the dynamics on approaching the glass transition. The
main feature of this model (described below) is a local kinetic frustration whose strengthf

can be varied to produce more or less cooperative dynamics. This model has been shown to
induce many phenomenological characters of glasses such as, for example, nonexponential
relaxations [12], non-Arrhenian dynamics [13], and secondary relaxations [14]. Moreover,
because of the simplicity of the model, the cooperative processes which govern the relaxation
of the system can be fully characterized. In particular, a cooperativity lengthLc can be
unambiguously defined [15] and exactly computed for each spin giving a detailed picture of
the cooperative processes in the system.

In this paper we use this concept of cooperativity length to study the cooperativity patterns
generated by various local kinetic constraints(f ) of the f -SFKI model. We will show in
particular that different local kinetic constraintsf lead to very different spatial organizations
of the cooperative processes and thus to heterogeneous dynamics of a different nature. The
main goal of this paper is to test whether or not there exists a dynamical length scale which
governs the relaxation of the system independently of the spatial organization of cooperative
processes.

2. Model and simulation techniques

2.1. The model

Basically, thef -SFKI model is a classical Ising model whose dynamics is made cooperative
by a local dynamical frustration rule [11]. We consider the case where theN spins(Si = ±1)
of the system do not interact together. They only interact with an external magnetic field(h)

so that the Hamiltonian of the system is simply:

H = h
N∑
i=1

Si (h = ±1). (1)

The magnetic fieldh can be settled toh = −1 orh = +1 to produce equilibrium spin-up
concentrations(c+) respectively greater or smaller than1

2. By varying the temperature, it
is thus possible to produce any spin-up concentration which is the parameter governing the
cooperative effects in the system.
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The dynamical frustration rule prevents a spin from flipping if it is not surrounded by
at leastf spins up.f is called the order of the frustration. Such a rule does not break the
detailed balance condition so that the equilibrium properties of the system are those of the well
known paramagnetic Ising model as long as the system remains ergodic. On the other hand,
the dynamic of the system is strongly affected by this rule since many spins are dynamically
blocked and need the cooperation of less frustrated surrounding spins to be unlocked and
allowed to relax. This effect is particularly sensitive for the low spin-up concentration for
which the frustration rule becomes increasingly difficult to fulfil. Such a situation occurs at
low temperature when the system is submitted to a positive magnetic field(h = +1).

In this paper, we have investigated different orders of frustration:f = 1.5, 2 and 3.
The non-integer valuef = 1.5 simply corresponds to a system where spins with order of
frustrationf = 1 andf = 2 are equally and randomly distributed in the lattice. In that case,
half of the spins need at least one spin-up among its first neighbours to be mobile while the
other half need at least two spins up. This situation could correspond experimentally to that
of mixed compounds made of molecules with different sizes and shapes: the largest and the
less spherical being the most frustrated.

2.2. The simulation techniques

We have calculated the equilibrium dynamical properties of thef -SFKI model at different
temperatures using the conventional Monte Carlo simulation technique. The simulations were
performed on a square lattices withN = L×L sites subject to periodic boundary conditions.
The equilibrium situations corresponding to a given temperature have been generated from the
all spin-up configuration(Si = +1,∀ i = 1, N) which is insensitive to the frustration rule. In
each case, several thousands of Monte Carlo steps (MCS) have been discarded at the beginning
of the simulation to settle a perfect equilibration of the system at the investigated temperature.

At each temperature, the relaxation of the system was probed by monitoring the
equilibrium autocorrelation function:

φeq(t) =
〈Si(O)Si(t)〉eq −M2

eq

1−M2
eq

Si = ±1 Meq = 〈Si〉eq . (2)

In the Monte Carlo process the spins were randomly updated using the individual transition
probabilitiesW(Si →−Si) proposed by Glauber [16]:

W(Si →−Si) = 1

2

(
1 + th

(
Sih

T

))
. (3)

These probabilities have the advantage over those proposed by Metropolis [17] of providing
a relaxation timeτ independent of the temperature for the non-frustrated system(τ =
1 MCS, ∀T for f = 0). The modifications of the dynamics which will appear forf 6= 0 will
thus be interpreted as a direct consequence of the frustration.

We have also calculated the equilibrium distribution of the cooperativity lengths of the
individual spins. The cooperativity lengthLc of a spin was initially defined by Sappelt and
Jäckle [15] and it can be determined in three steps:

(1) We consider a spin dynamically blocked according to the frustration rule.
(2) We determine the shortest sequence of flip satisfying the frustration rule, necessary to

mobilize the initially blocked spin.
(3) The neighbour’s shell number of the farthest spin in this sequence defines the cooperativity

length of the considered blocked spin.
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Figure 1. Evolution of the numbern(d < D) of different spins whose distanced to a given spin
is smaller thanD in a square lattice and for a metric of Manahttan. In an infinite system (- - - -)
this number diverges like 2D(D + 1) while in a finite system (——), this evolution slows down for
distancesD greater than the half lattice sizeL/2. This effect gives rise to an artificial increase of
the cooperativity lengths greater thanL/2 and thus to an overestimation of the relaxation timeτ .
To avoid this effect we have taken care to use systematically lattices whose sizeL is at least two
times that of the largest individual cooperativity length provided by the frustration.

The cooperativity length of one given spin thus represents the smallest distance over which
the spin’s reorganization has to occur to unlock a given spin. The cooperativity length of a
mobile spin is set equal to zero. The algorithm used to determine the cooperativity length of
a blocked spin is briefly described in [15] and in the appendix of this paper.

Strong size effects are expected to occur in finite systems when the largest individual
cooperativity length in the system exceed the half lattice size(L/2). This happens at
low temperature since the decrease of the spin-up concentration causes the increase of the
cooperativity lengths. To avoid this problem we have taken care to use large lattices (up to
300× 300) whose size is at least two times that of the largest individual cooperativity length
measured in the system. As shown in figure 1, smaller lattices lead unavoidably to overestimate
cooperativity lengths greater than the half lattice sizeL/2 and thus artificially slow down the
linear dynamics of the system.

3. Results

In order to characterize the spatial organization of the cooperative processes in thef -
SFKI model, we have determined the distribution of the cooperativity lengths at different
temperatures and for different orders of frustrationf . Our results show that for a given
average spatial extent of the cooperativity, its spatial organization is strongly dependent on the
details of the local frustration rule.

This is clearly shown in figure 2 where we have reported three equilibrium distributions of
cooperativity lengths corresponding to three different orders of frustration (f = 1.5,f = 2 and
f = 3). These distributions have been obtained at different temperatures (and thus correspond
to different spin-up concentrations) suitably chosen to provide the same average cooperativity
length(〈Lc〉 = 8). While these three distributions have the same centre of mass they have
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Figure 2. Equilibrium distributions of the cooperativity lengths in systems with different orders
of frustration (f = 1.5, 2 and 3). These distributions were obtained at different temperatures and
thus, for different spin-up concentrations, in order to provide the same average cooperativity length
(〈Lc〉 = 8). For f = 3, the beginning of the distribution is shown in the inset while the end of
the distribution which slowly decreases to zero forLc = 140 is not shown. All the data are drawn
from simulations of a large system (300× 300 spins) for which size effects are avoided.

Figure 3. Relaxation timeτ rescaled by the spin flip frequencyA (4, 5, 6) of the mobile spins
versus the average cooperativity length〈Lc〉. The three curves correspond to different orders of
frustration:f = 1.5(N), f = 2(•), andf = 3( ). A view of the data before rescaling is shown
in the inset.

strongly different structures. Forf = 1.5, the distribution shows a maximum whose position is
close to the average cooperativity length marked by the dashed line. Forf = 2, the distribution
runs to higher values while the maximum of the distribution is strongly shifted towards the small
cooperativity lengths. Note, also, a shouldering at a position where the previous distribution
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(f = 1.5) has its maximum. Forf = 3, the maximum of the distribution is much more
pronounced as shown by the very sharp peak localized aroundLc = 1 (inset of figure 2). The
shouldering observed forf = 2 has disappeared and is replaced by a very long tail slowly
decreasing towards cooperativity lengths as large asLc = 140.

For f = 1.5 or f = 2, the SFKI model is known to be ergodic [11]. Since there is no
interaction between the spins, the spins +1 and−1 are randomly distributed in the lattice in
proportions fixed by the detailed balance. The major differences seen in the spatial organization
of the cooperative processes (figure 3) thus cannot be attributed to some differences in the local
ordering of the spins. These differences are, in fact, directly generated by the dynamical local
frustration rule itself and appear to depend strongly on the order of the frustration. However,
the previous remarks do not hold for orders of frustrationf greater than 2. In that case the
frustration rule makes the system non-ergodic and induces some structural ordering. A detailed
study of the equilibrium thermodynamics properties of these highly frustrated systems will be
published elsewhere [18].

The above results show that the spatial organization of the cooperative processes which
lead to a given average cooperativity length〈Lc〉 are very different according to the order of the
frustration. This indicates that different local frustration mechanisms produce heterogeneous
dynamics of different natures. It is not thus obvious,a priori, that there exists a universal
relation between the relaxation time of the system and its average cooperativity length. To test
that point we have calculated the relaxation timeτ of thef -SFKI model in a wide range of
temperatures and for different orders of frustration. This relaxation time was determined from
the equilibrium autocorrelation function which was previously reported [11–13] to be non-
exponential forf = 2, but correctly described by the Kohlrausch–Williams–Watts (KWW)
law. We have found this behaviour to hold also forf = 1.5 andf = 3 over many decades in
time.

The relaxation times obtained from a fit to the autocorrelation functions with the KWW law
are plotted in the inset of figure 3 against the corresponding average cooperativity lengths. Note
that whatever the order of the frustration, the relaxation times converges towardsτ = 1 MCS
for the small cooperativity lengths. This situation simply corresponds to that of a non-frustrated
system effectively obtained for〈Lc〉 = 0. On the other hand, we observe a strong increasing
dispersion of the data for the high cooperativity lengths so that the three curves do not collapse
together onto a single master curve.

As indicated before, the distributions of cooperativity lengths leading to the same value of
〈Lc〉 for different orders of frustration are obtained for different spin-up concentrationsc+ and
thus for different temperatures. For the same reasons, the relaxation times in figure 3 related to
a given value of〈Lc〉were also obtained at different temperatures, and are, therefore, expected
to differ slightly from each other. This difference is due to the temperature dependence of the
spin flip frequencyA of the mobile spins which can simply be written as

A = c+W(+1→−1) + (1− c+)W(−1→ +1) (4)

and expressed against the temperature

A = 1

2

(
1− th2

(
h

T

))
(∀f = 0, 4) (5)

or expressed against the spin-up concentration in the ergodic situations, i.e. forf 6 2:

A = 2c+(1− c+) (∀f 6 2). (6)

The cooperativity and the temperature thus interplay to give the effective relaxation times
displayed in the inset of figure 3. To get rid of this interplay and to determine the effect of
cooperativity on the dynamics only, we have systematically rescaled the effective relaxation
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times by their corresponding spin flip frequencyA(T ) of the mobile spins (5), (6). The
results are shown in figure 3. Note that the three curves corresponding to three different
orders of frustration superimpose perfectly onto a single master curve. This means that the
average cooperativity length fully characterizes the cooperative dynamics of thef -SFKI model
whatever the order of frustration. Moreover, figure 3 also shows an asymptotic exponential
behaviour of the relaxation time for cooperativity lengths greater than one. A sharp blocking
transition of the dynamics for a finite average cooperativity length is thus not expected, even
for orders of frustration greater than two for which the system is non-ergodic.

4. Conclusion

To explain the particular dynamics of glass-forming systems, Adam and Gibbs [2] have
postulated the existence of cooperatively rearranging regions whose sizes govern the relaxation
of the system. The spatial extent of the cooperative processes is thus expected to provide a
characteristic length for the dynamics.

To test the universal aspect of this characteristic length we have investigated in detail
the cooperativity pattern which governs the dynamics of thef -SFKI model developed by
Fredrickson [11]. Different orders of frustrationf were studied (f = 1.5, 2 and 3) for a large
range of temperatures.

Our results reveal a universal connection between the relaxation time of the system and
the average spatial extent of the cooperative processes. This universality holds in the whole
investigated temperature range and for miscellaneous frustration mechanisms. In particular,
this universality holds despite the facts that:

• the spatial organization of the cooperativity is found to be strongly dependent on the details
of the frustration rule;
• no local structural ordering develops forf = 1.5 and 2 while it does forf = 3 [18];
• the dynamics is ergodic forf = 1.5 and 2 while it is non-ergodic forf = 3 [18].
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Appendix. Computational details

The algorithm used to determine the cooperativity lengthLc of a blocked spinSi is presented
in figure A1. The main procedure of this algorithm consists in flipping up systematically all
the flippable down spins on and inside thenth neighbour shell of the considered spinSi until
a stable configuration is reached. Starting from the first neighbour shell(n = 1), the previous
procedure is reiterated for increasing neighbour shell numbern, until the initially blocked spin
Si becomes mobile. The neighbour shell number for which this condition is met for the first
time then provides the cooperativity lengthLc of the blocked spinSi .

All the simulations presented in this paper were performed using a DEC Alfaserver
(1000A) computer. The simplicity of the frustration rule makes the spin-up updating quite
rapid (3×10−7 s for a single spin flip). On the other hand, the measurement of the cooperativity
lengthLc of one given spinSi is much more time consuming since it requires to visit many
times all the 2Lc(Lc + 1) spins located on and inside itsLcth neighbour shell.
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Figure A1. Schematic algorithm used to determine
the cooperativity lengthLc of a spinSi dynamically
blocked.
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